Winter School Membrane Reactors in Chemical Industry Organized by AMBHER Project and MACBETH project January 29th-30th, 2024 – TU/e Eindhoven

Electrification of structured catalysts

Prof. Vincenzo Palma

Department of Industrial Engineering University of Salerno, Italy vpalma@unisa.it

MEMBRANE REACTORS

A process intensification technology, combining

the membrane separation process with chemical reactions in a single unit.

Packed Bed Membrane Reactor

Pellets or powder catalyst
Inert membrane

Fluidized Bed Membrane Reactor

- > Powder catalyst
- > Inert membrane

Structured Catalyst Membrane Reactor

- Foam or wire catalysts
- > Inert membrane
- Optimal mass and heat transfer management

Electrification of structured catalysts

MEMBRANE AND CATALYSTS Easy to couple? Threshold temperatures Operating temperature range Reactor temperature profile Composition profile Pressure Driving force Catalyst-Membrane interactions Catalyst selectivity vs membrane deactivation **Catalyst vs Membrane regeneration conditions**

MEMBRANE AND CATALYSTS Easy to couple?

High operating pressure enhance permeation driving force but

> Could decrease conversion (MSR, PDH,ESR...)

> Could favor side reaction (coke formation)

Optimization of the catalytic system to achieve high selectivity and reduce deactivation rate

MEMBRANE AND CATALYSTS Easy to couple?

Catalyst Threshold temperature

The use of a catalytic formulation able to **reduce activation temperature**

Electrification of structured catalysts

MEMBRANE AND CATALYSTS

Some catalytic membrane assisted processes Studied at PROCEED

- Methane Steam reforming
- > Ethanol steam and Oxidative reforming
- > Propane Dehydrogenation
- > CO Water-gas shift

H₂ removal overcomes thermodynamic limitations

Pure hydrogen recovery

H₂ permselective Pd based membranes

How we can try to optimize the coupling?

MEMBRANE AND CATALYSTS

- To use <u>HIGH CONDUCTIVE STRUCTURED CATALYSTS</u> in order to:
 - Improve the heat management
 - Improve mass transfer mechanisms in solid-gas phase
 - Reducing the T gradient along radial and axial directions

The use of <u>high thermal conductivity catalytic carriers</u> able to increase the efficiency of the heat transfer may help us to optimize the coupling realizing:

- Improved Heat transport in Radial and axial direction along the catalyst
- Lower reactor wall T
- Flattened T profile along z axis

Choosing the right morphology, structured carriers (foams, cross-flow structures, novel 3D printing products) can be designed for <u>optimal</u> axial and radial convection and the combination with catalyst coating solves both issues of heat management and catalyst inventory.

Water gas shift reaction: catalysts comparison

 $CO + H_2O \rightleftharpoons CO_2 + H_2\Delta H^\circ = -41 \text{ kJ/mol}$

Powder vs Al Foam

1Pt/1Re20CeZrO4/Al2O3

Operative conditions:

T: 533 K (Constant heat flux from the oven); P: 1 atm; CO inlet: 21 vol%; H_2O inlet: 79 vol%, WHSV : 16 $g_{CO}/g_{1Pt1Re/CeZrO4}h^{-1}$

d **Department of Industrial Engineering** University of Salerno - ITALY

Water gas shift reaction: catalysts comparison

d

Water gas shift reaction: powder catalyst

SirQ $H_2 O = -41 \text{ kJ/mol}$

Conductive flux mainly due to the stainless steel reactor

Water gas shift reaction: structured catalyst

$sim cot = CO_2 + H_2 \Delta H^\circ = -41 \text{ kJ/mol}$

Foam Catalyst in WGS reaction

Heat redistribution due to the high conductive Aluminum

Department of Industrial Engineering

MULTIPHYSICS

MEMBRANE AND CATALYSTS

How we can try to <u>further</u> optimize the coupling?

• **ELECTRIFICATION OF STRUCTURED CATALYSTS** in order to:

- Generate Heat directly on the catalyst volume/surface
- Selective heating of the catalytic zone
- Precise control of the temperature profile
- Avoid hot spots and thermal stress of the membrane
- Increase the selectivity of the system (higher stability?)

ELECTRIFICATION METHODS

THE STRUCTURED ELECTRIFIED CATALYSTS CAN COMBINE THE CATALYTIC ACTIVITY WITH THE HEATING FUNCTIONALITY

MICROWAVE HEATING (Direct Heating)

The alternating electric field of the microwaves generates heat by moving **dipolar molecules** or by getting absorbed in the so-called "dielectric lossy" **solid nonmagnetic materials**.

Example:

Silicon carbide (SiC) Excellent microwave-heating capability

OHMIC OR JOULE HEATING (Indirect Heating)

The electric current circulating in a conductive material causes power loss in the form of heat generation.

Conductive structured support

Example:

Silicon-doped silicon carbide (SiSiC) High conductive material

MICROWAVE HEATING

Main features

- **Reverse of the heat flux** from the inside to the outside of the catalytic bed
- Selective heating of the catalyst based only on the dielectric properties of the material

Applications

- Biomass valorization ^[1,2]
- Methane steam reforming ^[3]
- CO₂ desorption from zeolites ^[4]
- Propane dehydrogenation ^[5]

SiC monolith as support for catalysts

- Excellent MWheating capacity
- High thermal conductivity

[1] Ricciardi et al, Reactive Extraction Enhanced by Synergic Microwave Heating: Furfural Yield Boost in Biphasic Systems. ChemSusChem 2020, 13, 3589–3593.
[2] Motasemi et al, Multicomponent conjugate heat and mass transfer in biomass materials during microwave pyrolysis for biofuel production. Fuel 2018, 211, 649–660.
[3] Meloni et al, Ultracompact methane steam reforming reactor based on microwaves susceptible structured catalysts for distributed hydrogen production. Int. J. Hydrogen Energy 2020, 46, 13729–13747.
[4] Meloni et al, Intensification of TSA processes using a microwave-assisted regeneration step. Chem. Eng. Process. Process. Intensif. 2020, 160, 108291.
[5] Ramirez et al, Microwave-activated structured reactors to maximize propylene selectivity in the oxidative dehydrogenation of propane. Chem. Eng. J. 2020, 393, 124746.

CASE STUDIES

METHANE DRY REFORMING

METHANE STEAM REFORMING

DEHYDROGENATION OF PROPANE

CASE STUDIES

METHANE STEAM REFORMING

3 DEHYDROGENATION OF PROPANE

 $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$ $\Delta H^0_{298} = 247 \text{ kJ/mol}$

- Preparation and characterization of Ni-based structured catalyst by using a SiC carrier;
- 2. Preliminary microwave heating test
- 3. Microwave-assisted catalytic activity test

Catalyst preparation

Electrification of structured catalysts

MW apparatus and reactor EASY TO COUPLE?

The reactor acts as a wave's guide,

and it must be carefully designed

Crossover wavelength for a tubular geometry:

$$\lambda_c = 4 d$$

MW wavelength For 2,45 GHz λ =12cm

Processes & Catalysis for Energy & Environment depollution

Preliminary heating test

Feeding	Argon
Flowrate (NL/min)	2
MW Power (W)	200-600
Pressure (atm)	1

2 thermocouples in the middle and outlet section of the monolith to use the silicon carbide itself to shield them from the electromagnetic field

The reaction temperature is reached by using a power of 600 W.

MW assisted activity tests at two different WHSV

	Carrier	WHSV [h ⁻¹]	T [°C]	X _{CH4} [%]	Hydrogen produced [Nm ³ /h]	Supplied energy [kW]	Energy consumption [kWh/ Nm ³ H ₂]	Theorical limit value [kWh∕ Nm ³ H₂]
MW	SiC monolith	4 10	700 700	73.5 60.23	0.063 0.122	0.605 0.526	9.52 4.3	1.9

CASE STUDIES

DEHYDROGENATION OF PROPANE

MICROWAVE HEATING

Electrification of structured catalysts

STEAM REFORMING: (MW)

xNiwt%/10wt%CeO₂/30wt%Al₂O₃_SiC

Diameter [cm]4.1Length [cm]10.1Number of channels308Walls thickness0.6[mm]0.6Channels length1.6[mm]1.6SiC 2Sic 2
Length [cm]10.17wt% on SiC1Number of channels3087wt% on SiC1Walls thickness0.61.6[mm]1.61.6[mm]1.3315wt% on SiC2
Number of channels3087wt% on SiCIWalls thickness [mm]0.6Channels length [mm]1.6Imm]1.6SiC 2133
Walls thickness 0.6 [mm] 0.6 Channels length 1.6 [mm] 1.3 Total volume [cm³] 133 SiC 2 Sic 2
Channels length 1.6 [mm] 1.3 Total volume [cm³] 133 SiC 2 Sic 2
Total volume [cm³] 133 15wt% on SiC. SiC 2 Diameter [cm] 0
SiC 2
Diamates [am]
Diameter [cm] 6
Length [cm] 9
Number of channels 559
Walls thickness [mm] 0.6
Channels length [mm]
Total volume [cm³]254

Ni catalysed monolith

t% on SiC2

Electrification of structured catalysts

2

STEAM REFORMING: process intensification by means of structured catalysts active for the reaction and susceptible to microwaves (MW)

NiWSiC2 approaches the thermodynamic equilibrium at about 780°C, showing, in whatever case, a H2 Yield very close to the thermodynamic equilibrium for temperature higher than 700°C.

NiWSiC1 showed a significantly lower CH₄ conversion and H2 Yield, and only at about 880°C approached the thermodynamic equilibrium.

		rgy nption			
Microwave process $3.8 \frac{kWh}{Nm_{H2}^3}$					
Technology	Conventional alcaline electrolyser	Advanced Alcaline electrolyser	Proton exchange electrolyser	High temperature electrolyser	
Efficiency	77-80%	80-90%	85-90%	90-100%	
Energy consumption (kWh/Nm ³ _{H2})	4.3-4.9	3.8-4.3	4.2-5	3.5	

Hydrogen production from water electrolysis:current status and future trends. Proceedings of the IEEE vol. 100 n°2, 2012.

Optimization of the reactor geometry

The reactor geometry was studied in order to INTENSIFY the MW Field in the catalytic volume

Electrification of structured catalysts

CFD Modelling MODEL EQUATIONS

Electrification of structured catalysts

ELECTROMAGNETIC FIELD IN THE EMPTY WAVE GUIDE

CFD Modelling

Electrification of structured catalysts

ELECTROMAGNETIC FIELD IN THE FILLED WAVE GUIDE

A special geometry with a restriction in the catalytic section seems to intensify the electromagnetic field in the catalytic bed.

CFD Modelling

Electrification of structured catalysts

FLOW AND TEMPERATURE

Electrification of structured catalysts

Microwave reactor optimized configuration

GHSV = 5000 h⁻¹

Electrification of structured catalysts

University of Salerno Prof. Vincenzo Palma

2

STEAM REFORMING: process intensification by means of structured catalysts active for the reaction and susceptible to microwaves (MW)

Electrification of structured catalysts

GHSV = 5000 h⁻¹

The new reactor configuration resulted in a lower MW power needed to reaching the same temperature.

500W instead of 800W are needed for having the same temperature of 800°C.

By applying the thermal balance, the energy efficiency of the MW-assisted tests can be calculated.

 $(F_{CH4,in} \cdot cp_{CH4,in} + F_{N2,in} \cdot cp_{N2,in}) \cdot (T_{gas,in} - T_{rif}) + F_{H20,in} \cdot cp_{H20,in} \cdot (T_{H20,in} - T_{rif}) - (F_{CH4,out} \cdot cp_{CH4,out} + F_{N2,out} \cdot cp_{N2,out} + F_{H20,out} \cdot cp_{H20,out} + F_{C02,out} + F_{C02,out} + F_{C02,out} \cdot cp_{C02,out} + F_{H2,out} \cdot cp_{H2,out}) \cdot (T_{gas,out} - T_{rif}) - (F_{CH4,in} - F_{CH4,out}) \cdot \Delta H^{\circ}_{R,Trif}, SR + (F_{C02,in} - F_{C02,out}) \cdot \Delta H^{\circ}_{R,Trif}, WGS + Q_{MW} - Q_{diss} = 0$

Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE vol. 100 n°2, 2012.

MW-ASSISTED REFORMING PROCESSES						
Process	Catalyst	MW input	Operating Condition	X _{CH4} ; X _{CO2}	Energy Consumption kWh Nm ⁻³ H ₂	Reference
MDR	7Ru/SrTiO ₃	P = 36.99 kW	CO ₂ /CH ₄ =1 T=940 °C.	X _{CH4} = 99.5% X _{CO2} = 94%	18.6	Gangurde et al., 2018
MDR	La _x Sr _{2-x} CoO _{4 -} Mn	P = 140 W	CO ₂ /CH ₄ =1 WHSV = 10 L h ⁻¹ g ⁻¹	X _{CH4} = 80% X _{CO2} = 80%	4.0	Marin et al., 2021
MSR	15%Ni/CeO ₂ - Al ₂ O ₃ on a SiC monolith	P = 800 W @ GHSV = 3300 h ⁻¹ P = 1000 W @ GHSV = 5000 h ⁻¹ 1	GHSV = 3300 and 5000 h ⁻¹ T = 550 – 950 °C P = 1 bar S/C = 3	CH ₄ equilibrium conversion T = 800 °C – GHSV = 3300 h ⁻¹ T = 850 °C – GHSV = 5000 h ⁻¹	3.8	Meloni et al., 2021
MSR	7%Ni/CeO ₂ - Al ₂ O ₃ on a SiC monolith	P = 400 W	GHSV = 5000 h ⁻¹ T = 550 - 800 °C P = 1 bar S/C = 3	CH ₄ equilibrium conversion @ T = 750 °C	2.5	Meloni et al., 2022

MICROWAVE ASSISTED CHEMICAL PROCESSES

METHANE STEAM REFORMING

$$C_3H_8 \rightleftharpoons C_3H_6 + H_2$$

Critical aspects

- > High operating temperatures
- > Homogeneous side reactions favored at high temperatures -
- **<u>Coke formation and frequent catalyst regeneration cycles</u>**

ΔH°_{r, 298K} = 124.3 kJ/mol

Hydrogenolysis of propane $C_3H_8 + H_2 \rightleftharpoons C_2H_6 + CH_4$ Cracking of propane $C_3H_8 \rightleftharpoons C_2H_4 + CH_4$ Deep dehydrogenation $C_3H_6 \rightleftharpoons C_3H_4 + H_2$

Process intensification

- Study and preparation of a Pt-Sn-based catalyst supported over MgO-modified alumina
- Transfer of the catalytic formulation over a SiC monolith to obtain a MWs susceptible structured catalyst
- Testing of the structured catalyst both with conventional and MW heating technique

Catalyst preparation

Electrification of structured catalysts

University of Salerno Prof. Vincenzo Palma

MICROWAVE HEATING

MW assisted dehydrogenation of propane to propylene

DIFFERENT HEATING METHOD SAME REACTOR

Electrification of structured catalysts

MICROWAVE HEATING

MW assisted dehydrogenation of propane to propylene

MICROWAVE HEATING

MW assisted dehydrogenation of propane to propylene

REACTOR CAVITY AFTER THE ACTIVITY TEST

0.90 - 0.87

Electrification of structured catalysts

 $\underline{C}_{out}/C_{in}$

University of Salerno Prof. Vincenzo Palma

1.02 - 1.03

3 MW assisted dehydrogenation of propane to propylene <u>EFFECT OF MW ELECTRIFICATION ON PDH</u>

- Reverse of the heat flux assured by the MW heating
- Limited coke formation and improved propylene selectivity

- Selective MW heating of the catalyst
- Reduced homogeneous reactions
 - Higher selectivity towards the desired products

JOULE/OHMIC HEATING

JOULE HEATING TECHNOLOGY

allows to perform electricity-driven process

OHMIC CHEMICAL PROCESSES

METHANE DRY REFORMING: Electrically driven SiC-based structured catalyst

METHANE DRY REFORMING: Ni-catalyzed Si-SiC foam

METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam

OHMIC CHEMICAL PROCESSES

METHANE DRY REFORMING: Electrically driven SiC-based structured catalyst

METHANE DRY REFORMING: Ni-catalyzed Si-SiC foam

METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam

Processes &

METHANE DRY REFORMING: Electrically driven SiC-based structured catalyst <u>Preparation of a catalyst directly on the surface of a commercial heating element</u>

Conductive SiC element

Temperature profile along the SiC element as a consequence of the Joule effect

SiC parameters	used for th	e "heat transfer	in solids"	physics.
----------------	-------------	------------------	------------	----------

Property	Measure unit	Value
electrical conductivity	$\mathrm{S}~\mathrm{m}^{-1}$	1*10 ³
Specific heat (Cp)	$J (Kg^{*}K)^{-1}$	1200
Relative permittivity	1	10
Density	Kg m ⁻³	3200
Thermal conductivity	$W (m^*K)^{-1}$	450
Superficial emittivity	1	0.5
Seebeck coefficient	$V K^{-1}$	$750*10^{-6}$

Final Ni-based Catalyst

University of Salerno Prof. Vincenzo Palma

1

METHANE DRY RERFORMING: Electrically driven SiC-based structured catalyst

The experimental data approach the thermodynamic equilibrium profile even at low temperatures (at 760°C a CH_4 conversion equal to 84 % and a H_2 yield equal to 75 % were obtained). The obtained values are higher than the ones reported in literature for catalysts with a comparable Ni loading.

METHANE DRY RERFORMING: Electrically driven SiC-based structured catalyst

Properly designed MDR experimental tests have been performed, at the WHSV values of 70, 230 and 940 h⁻¹, with the aim to evaluate the energy consumption of the system.

Temperature [°C]	WHSV [h ⁻¹]	P _{el} [W]	Q _{H2} [Nm ³ h ⁻¹]	Energy consumption kWh Nm ^{–3} H ₂
760	70	218	0.022	9.9
760	230	230	0.043	5.4
760	940	310	0.061	5.1

- The system works fine and is able to reach the Equilibrium composition in the overall T and SV investigated.
- The energy efficiency is not optimised, even if the results improved at higher SV.
- The higher energy consumption at the lower SV values can be explained considering the lab scale of the reactor, where the heat dissipation have a big role.

Limitations of this study: Carrier Geometry, Support Materials, Not optimized catalyst formulation

OHMIC CHEMICAL PROCESSES

METHANE DRY REFORMING: Electrically driven SiC-based structured catalyst

METHANE DRY REFORMING: Ni-catalyzed Si-SiC foam

METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam

METHANE DRY REFORMING: Ni-catalyzed Si-SiC foam

Ohmic heated reactor configuration

Preliminary heating test

Electrification of structured catalysts

20 65 25 120 30 180 The reaction temperature is reached by using a power of 180 W.

Power

Supply [W]

5

15

37

[%]

5

10

15

Electrically heated activity tests at two different WHSV

METHANE DRY REFORMING: Ni-catalyzed Si-SiC foam

Energy consumption comparison with other electrified reforming studies

Technology	Energy consumption, kWh*Nm ⁻³ H ₂
Conventional alcaline electrolyser [1]	4.3-4.9
Advanced Alcaline electrolyser [1]	3.8-4.3
Proton exchange electrolyser [1]	4.2-5
High temperature electrolyser [1]	3.5
Microwave-assisted MSR [1]	3.8
Microwave-assisted MSR [2]	2.5
Microwave-assisted MDR [3]	4.6
Microwave-assisted MDR [4]	18.58
Microwave-assisted MDR [5]	3.98
Microwave-assisted MDR [6]	4.3
Indirect electrification MDR [6]	2.6
Electrically-driven (SiC) MSR [7]	4.8
Electrically-driven (Electric Field) MSR [8]	3.21-3.98
Electrically-driven (SiC) MDR [7]	5.1
Electrically-driven (Electric Field) MDR [9]	18
Electrically-driven (FeCrAlloy) MDR [10]	Not available
Electrically-driven (SiSiC foam) MSR [11]	2

- 1. Meloni E., Martino M., Ricca A., Palma V., 10.1016/j.ijhydene.2020.06.299
- 2. E. Meloni, M. Martino, V.
 - Palma, 10.1016/j.renene.2022.07.157
- Fidalgo B., Menéndez J.A., 10.1016/j.fuproc.2011.03.015 3.
- Gangurde L.S., 10.1016/j.cep.2018.03.024 4.
- Marin C. M., 10.1016/j.apcatb.2020.119711 5.
- 6. Meloni, E., 10.1016/j.renene.2023.04.082
- 7. Renda S., Cortese M., Iervolino G., Martino M., Meloni E., Palma V., 10.1016/j.cattod.2020.11.020
- 8. Sekine Y., 10.1016/j.cattod.2011.03.076
- 9. Yabe T., Mitarai K., Oshima K., Ogo S., Sekine Y., 10.1016/j.fuproc.2016.11.013
- 10. Rieks M., Bellinghausen R., Kockmann N., Mleczko L., 10.1016/j.ijhydene.2015.09.113
- 11. Zheng L., 10.1002/aic.17620.

OHMIC CHEMICAL PROCESSES

METHANE DRY REFORMING: Electrically driven SiC-based structured catalyst

METHANE DRY REFORMING: Ni-catalyzed Si-SiC foam

METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam

3 METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam With no electrically conductive properties Main goals

- Identification of the optimal coating procedure and catalytic active phases dispersion
- Adding the Joule heating functionality by applying resistive elements
- Perform the catalytic activity test

• Evaluation of the overall Energy efficency at different operative conditions

۰

Catalyst preparation

60mm 20mm

20 ppi SiC open foam annulary shaped OD 60mm and ID 20mm

- High thermal conductivity
- High Temperature resistance
- Low pressure drop
- High Surface to volume ratio

Y-Al2O3 (15%wt) WASHCOATED FOAM

University of Salerno Prof. Vincenzo Palma

METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam

Catalyst preparation Ceria and Ni addition

Y-Al2O3 COATED FOAM

CeO2/ɣ-Alumina FOAM

Ni(10%wt)/CeO2/ɣ-Al2O3 Catalytic FOAM

METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam Combining the heating functionality

Catalyst electrification

- Internal heating element (SiC)
- Catalytic foams

- Covered by insulating cement
- Adding the external heating element in Kanthal

Catalyst Volume 0,3 dm³

Ohmic values:

- Ext. 29 Ohm
- Int. 8 Ohm

METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam

Electrically driven CATALYST HEATING

3 METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam

Electrically driven CATALYTIC TESTS

Electrification of structured catalysts

University of Salerno Prof. Vincenzo Palma 3

METHANE STEAM REFORMING: Ni-catalyzed OBSiC foam

Energetic evaluations at different operating conditions

METHANE DRY REFORMING: Ni-catalyzed Si-SiC foam

Energy consumption comparison with other electrified reforming studies

Technology	Energy consumption, kWh*Nm ⁻³ H ₂	
Conventional alcaline electrolyser [1]	4.3-4.9	
Advanced Alcaline electrolyser [1]	3.8-4.3	
Proton exchange electrolyser [1]	4.2-5	
High temperature electrolyser [1]	3.5	
Microwave-assisted MSR [1]	3.8	
Microwave-assisted MSR [2]	2.5	
Microwave-assisted MDR [3]	4.6	
Microwave-assisted MDR [4]	18.58	
Microwave-assisted MDR [5]	3.98	
Microwave-assisted MDR [6]	4.3	
Direct electrification MDR [6]	2.6	
Electrically-driven (SiC) MSR [7]	4.8	
Electrically-driven (Electric Field) MSR [8]	3.21-3.98	
Electrically-driven (SiC) MDR [7]	5.1	
Electrically-driven (Electric Field) MDR [9]	18	
Electrically-driven (FeCrAlloy) MDR [10]	Not available	
Electrically-driven (SiSiC foam) MSR [11]	2	

This work: 1.40 kWh*Nm⁻³H₂

- 1. Meloni E., Martino M., Ricca A., Palma V., 10.1016/j.ijhydene.2020.06.299 2. E. Meloni, M. Martino, V. Palma, 10.1016/j.renene.2022.07.157 3. Fidalgo B., Menéndez J.A., 10.1016/j.fuproc.2011.03.015 Gangurde L.S., 10.1016/j.cep.2018.03.024 4. Marin C. M., 10.1016/j.apcatb.2020.119711 5. Meloni, E., 10.1016/j.renene.2023.04.082 6. 7. Renda S., Cortese M., Iervolino G., Martino M., Meloni E., Palma V., 10.1016/j.cattod.2020.11.020 8. Sekine Y., 10.1016/j.cattod.2011.03.076 9. Yabe T., Mitarai K., Oshima K., Ogo S., Sekine Y., 10.1016/j.fuproc.2016.11.013
- 10. Rieks M., Bellinghausen R., Kockmann N., Mleczko L., 10.1016/j.ijhydene.2015.09.113
- 11. Zheng L., 10.1002/aic.17620.

JOULE HEATING TECHNOLOGY

Some examples

COMPARISON AMONG THE STUDIED HEATING METHODS

MICROWAVE ASSISTED HEATING		OHMIC HEATING	
ADVANTAGES	DISASVANTAGES	ADVANTAGES	DISADVANTAGES
• Inversion of heat flux	• Difficulty in scaling-	• Inversion of heat flux	• Problems of adhesion and stability of the catalytic
 <u>Selective catalyst</u> <u>heating</u> 	up operation;	• <u>Very high heat flux rate</u>	film over the electrically conductive carriers
	Low Magnetron	<u>Very high energy transfer</u>	
<u>Elimination of the</u> <u>solid-solid heat</u> transfer limits	<u>efficiency (50-60%)</u>	• Possibility of	 Necessity for a specific redesign to optimize catalyst
		using renewable energy	performance
 <u>Possibility of</u> <u>using renewable</u> 		• <u>Precise control of the T</u>	• Possible side negative effect of
<u>energy</u>		<u>profile</u>	structured substrate

- The catalysts and membrane coupling can be optimized by electrifying high conductive structured catalyst
- > The microwave heating and joule/ohmic heating are two promising electrification methods
- Suitable materials (MW susceptor and hi-conductive carrier) must be chosen for the catalyst
- > **Reactor geometry** is the key to magnifying the electromagnetic field **in the MW heating application**
- Energy consumption results have shown values close or lower than that reported for other electrified processes, including the modern electrolysers

THE TEAM

Electrification of structured catalysts

University of Salerno Prof. Vincenzo Palma

Prof. Vincenzo Palma

Department of Industrial Engineering University of Salerno

vpalma@unisa.it

Thank you for you kind attention

Electrification of structured catalysts

University of Salerno Prof. Vincenzo Palma

