

Carbon molecular sieves membranes (CMSM)

- David A. Pacheco Tanaka, Margot A. Llosa Tanco,
- Arash Rahimalimamaghani , Fausto Gallucci.

January 29th 2024

Eindhoven

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Membranes for gas separation

Gas permeation in porous membranes (Pore >2 nm)

Gas permeation in dense membranes

Polymeric hollow fiber membranes

Porous Ceramic supports

Polymeric precursors for CMSM

Preparation of supported AI-CMSM

Carbonization

TEM Carbon Membrane

Chengwen S., Tonghua W., Huawei J., Xiuyue W., Yiming C., Jieshan Q., *J.Membr. Sci.*, *361*, 22-27, **2010**.

Effect of the temperature of carbonization

Proton -NMR

T₁ values of n-hexane and water confined as function of

O₂ and N₂ very low flux

Llosa , Pacheco et.al Int J.hydrogen energy 40 (2015) 5653 40 (2015) 3485

14:49

Solutions to mitigate global warming

QReduce the emission of greenhouse gases

Use of clean fuels

CO2 capture and utilization

Utilization

NH3 GREEN AMMONIA

Renewable Low-

and

$$H_2 + 0.5 O_2 \leftrightarrow H_2 C$$

0

MBER OF BASQUE RESEARCH TECHNOLOGY ALLIANCE

tecnal:a EINDHOVEN UNIVERSITY OF TECHNOLOGY

Page 13

credit : gloly67

Synthesis of dimethyl ether using membrane reactors

Sustainable Process Industry thr Resource and Energy Efficiency

14:49 Y I I Gas grids for storage and distribution of CH₄ 10% H₂ /90 % CH₄

Pd 2 DS

Techno-economic evaluation on a hybrid technology for low hydrogen concentration separation and purification from natural gas grid

Maria Nordio ^a, Solomon Assefa Wassie ^a, Martin Van Sint Annaland ^c, D. Alfredo Pacheco Tanaka ^b, José Luis Viviente Sole ^b, Fausto Gallucci ^{a,*}

Int. J. hydrogen energy 46(2021)23417

Total pressure difference [bar]

Comparison between carbon molecular sieve and Pd-Ag membranes in H₂-CH₄ separation at high pressure

Maria Nordio ^a, Jon Melendez ^b, Martin van Sint Annaland ^c, D. Alfredo Pacheco Tanaka ^b, Margot Llosa Tanco ^b, Fausto Gallucci ^{a,*}

Int. J. hydrogen energy 45(2020)28876

AI-CMSM

Boehmite nanoparticles

Novolac resin <mark>Ethylenediamine</mark> HCHO NMP

Effect of aluminium acetyl acetonate on the hydrogen and nitrogen permeation of carbon molecular sieves membranes

A. Rahimalimamaghani ^a, D.A. Pacheco Tanaka ^{a,b}, M.A. Llosa Tanco ^{a,b}, F. Neira D'Angelo ^a, F. Gallucci ^{a,c,*}

Pore size distribution by perm-porosimetry

CMSM for Selective **CO**₂–Separation at Elevated Temperatures and Pressures

H ₂ N	С		н		0		N		MW
\sim NH ₂	% *	# atoms	% *	# atom	% *	# atom	% *	# atom	
Novolac	76.97	19	6.79	20.0	16.24	3			296
E 0	94.12	31	1.53	6.00	4.35	1.07			395
E 0.4	92.09	122	1.90	30.0	5.05	5.02	0.96	1.1	1590
E 1.2	89.08	187	2.36	59.0	5.74	5.07	2.82	9.04	2519

crosslink

Propionic acid production by membrane bio-reactors

Page 27

Pore size distribution

H₂ vs NH₃

NH₃ Liquid at 10 bar or -33 °C Ammonia has a supply chain and storage well established

NH₃ was used in internal combustion engines since 1800

The density of hydrogen in hydrogen carriers

Energies 2021, 14(13), 3732

NH₃ as transport and storage of H₂

14:49

0.40

Kinetic diameter

Separation of H₂ from NH₃ cracking

 $2NH_3 \leftrightarrow N_2 + 3H_2$

Pd particles are confined in the nano-space of YSZ- γ -Al₂O₃

Conclusions CMSM

- The pore size, pore size distribution and interaction of the pores with gases can be tunned by modifying :
 Polymer.
- Carbonization temperature.
- Addition of fillers.
- Comparing with polymeric membranes CMSM
- For gas separation, they have better permeation properties
- Thermal and mechanical more stable
- More expensive
- CMSM have great potential in Membrane reactors

Funded by the European Union under grant agreement No 700355 (Hygrid), 838014 (C2FUEL), 862482 (areNH₃a), 101058565 (Ambher), 101091887 (MEASURED), 101112118 (Andreah). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them

Many thanks