	1	

Grafting of Ceramic Membranes : Widely Broadening the Application Potential of Ceramic Membranes in Liquid Filtration

A. Buekenhoudt

29/01/2024 ©VITO – Not for distribution

VITO

Flemish Institute of Technological Research (Belgium)

In 2021 ~220 MEuro

Flanders based Global focus

Fast-growing ~75% external revenue

VITO

CHEMISTRY

New value chains from renewable and circular resources

Process Transformation

Air & climate

Water Land use

Innovative technology

I am my health

Sustainable health solutions

Environment, health & safety

Buildings & Districts Energy markets & strategies Optimisation of thermal energy systems Interfaces for electrical storage

Ceramics and powder metallurgy Circular economy strategies Getting value out of waste Structured materials

VITO

Membrane technology at VITO:

- Focus on liquid filtration
- Aqueous + organic solvent-based streams
- Pressure driven filtrations, membrane contactors, pervaporation
- Down-stream separation and coupling to (bio)reactors
- Process and membrane development
- From lab to pilot scale
- Techno-economic evaluation
- Collaborative projects and contract research

Ceramic membranes for liquid filtration

State of the art membranes: tubular, metal oxide or SiC, from NF to MF

Grafting of ceramic membranes

Two methods for membrane functionalization: post-synthesis and in-situ

Incentives:

- Increase stability
- Decrease pore size
- Change surface polarity
- Change surface functionality/affinity

Innovative post-synthesis surface modification technique On commercially available ceramic membranes/materials

Variety of groups already grafted using this technology

Alkyl modification of 1 nm TiO₂ membranes : amphiphilic, idem MWCO

Grafting ceramic membranes : tuning chemistry of membrane pore surface

Expanding potential of membrane filtration

Grafting ceramic membranes : increasing application potential of ceramic membranes

Increasing nanofiltration in organic solvents = OSN

High retentions for many different solutes and solvents

Performance as function of solvent polarity: diafiltration EtAc \rightarrow EtOH

SuMems

Pd removal from mother liquor methanol-based (97%)

- ~ 7 g/L succinic acid + traces K-salt
- ✓ small amount of toluene
- API (400 Da) ~ 1g/L
- 60 à 100 ppm Pd

Membrane	TMP (bar)	Flux (L/hm2)	R(Pd) in %
0,9 nm C1	20	9,8	92,8
0,9 nm native	10	62,0	22
Koch MPF 34	20	1,1	85

POC at 0,1 m² (19ch 50 cm) Membrane cleaning: MeOH rinse + pH10

Many different demonstrations at pilot scale

Present method: 9 L/L extractions & vacuum distillation

Solute: Chiral molecule ~1500 g mol-1

Task: solvent exchange & solution concentration

Membrane: 0.9 nm C1 TiO2 (0.75 m2)

Membrane performance

Permeance: 1.4 – 2.9 Lm⁻²h⁻¹ bar⁻¹ diafiltration 1.5 – 0.15 Lm⁻²h⁻¹ bar⁻¹ concⁿ

Rejection:

98.1% - 99.1% 99% - 92% diafiltration concⁿ

Grafted

membranes

better than

alternatives

Different demonstrations at pilot scale

Robust, long-term behavior

Economic feasibility EEMBAR/ISRO : Energy-efficient membrane-assisted recovery of acetone

- Acetone recovery from different edible oils (palm or shea nut oil)
- Demonstrate techno-economical feasibility of OSN process through long term pilot testing in industrial environment (TRL 7)
- ☆ Comparison membranes : FunMem) ↔ polymeric SolSep membranes

FunMem performance at pilot-scale : Oil retentions ~90 % Fluxes 20 à 40 l/hm²

Strongly reduced fouling for C₁ grafted membranes in a variety of waste waters

No to low irreversible fouling for a wide range of foulants For non-aromatic foulants: also Ph grafted membranes anti-fouling

W02015/124784A1

Effect of Ca on humic acid fouling unraveled:

- Decrease of polar groups by complexation
- Relative increase of aromaticity by complexation

G. Mustafa et al., Water Research, 93 (2016)195-204

Higher and more stable process flux + sometimes higher retentions

G. Mustafa et al., Water Research, 104 (2016) 242-253

Demonstration for MF (SiC) membranes for real oil produced water

AMK proceedings 2016

ISP

Separations based on membrane-solute affinity: NF

EasiChem

Separations based on membrane-solute affinity : membrane extraction (ME)

Feed : 10 g/L each in toluene

Molecule	MW	LogP
2-ethyl-hexylacetate	172	3,72
2-ethyl-hexanol	130	2,74
propionic acid	74	0,33

EasiChem

In-situ product recovery by membrane extraction (ME)

Dry fine-porous hydrophobic membrane (FunMem) to avoid solvent leaching of open-porous membrane (e.g. PTFE or PP) Rehn et al., J. Biotechn., 179 (2014)

EasiChem

In-situ product recovery by membrane extraction (ME) : membrane-solute affinity driver

Feed : 1g/L each

MPPA

MBA

IPA

Polar component slowest

Property	МРРА	MBA	IPA
Log P	2,26	1,52	0,39
pKa	10,63	9,54	10,73
% uncharged at pH=10	19	74	16

Development of FunMem

From stirring + shaking towards grafting at large scale in filtration conditions

From 12 cm single tubes towards 120 cm long multichannel elements

Production for different piloting campaigns

Further upscaling FunMem production

Next step in 2021-22 : upscaling/upgrading existing grafting pilot line

Open Innovation Test Bed for nano-enabled Membranes

Our Pilot is one out of 14

	Actual system	Upscaled system	
	Fixed size of multichannels	Flexible length 120/118 cm	
Production capacity increase	Production of 5 membranes/week	Production of 10 membranes/24h	
	High vacuum pre-treatment	Easier pre-treatment	

Further upscaling of FunMem production

Same skid, two layers of membranes; modules for membranes of flexible lengths

Show Case of anti-fouling action FunMem

Demonstration of FunMem: metal removal from scrubber water from power plants (DK)

Commercialization of FunMem

Creation of a spin-off : 01 December 2021

Bart Coen

Systematic production of large amounts of grafted membranes

Enzyme immobilization

- On PAEM modified TiO₂ powder (+ membranes)
- Covalent binding enzyme via glutaraldehyde
- Esterification activity : 645 ester/g compared to 891 ester/g for beads with higher surface area

Chromatography ✓ ZirChrom TiO₂ + C12 powder ✓ Partition coefficients: K(MPPA) = 92 > K(IPA) = 8 ✓ Comparable to ME results

Waste Oil to Long-chain Di-Carboxylic Acids = WODCA project

Goal DSP

- 1. Product recovery
- 2. Product concentration / purification
- 3. Avoid product inhibition (ISPR)

CUstomised MEmbranes for green and Resilient Industries 🛛 🔤 🗖 🗌 M E R I

Acknowledgements

Funding + team

- FunMem4Affinity (BE)
- CeraWater (EU)
- Produced Water (NL)
- SuMems (BE)
- EasiChem (BE)
- Innomem (EU)
- MacBeth (EU)
- WODCA (BE)
- CUMERI (BE)

29/01/2024 ©VITO – Not for distribution

• • •

Thank you for your attention !

29/01/2024 ©VITO – Not for distribution