H₂ production via NH₃ decomposition in membrane reactors: experimental, process design and techno-economics

> <u>Valentina Cechetto</u> Luca Di Felice F. Gallucci

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Background

HYDROGEN

Ideal energy carrier

 Its combustion produces only water as by-product
High efficiencies for energy conversion are achieved when it is employed as feedstock for power production.

Challenging storage and distribution

Its low volumetric energy density and the difficulties associated with gas handling have so far prevented H₂ - based technologies to achieve popularity for commercial applications in the power production field. Hydrogen storage in **liquid carrier compounds**

AMMONIA

Easy to be transported over long distances
Easy to be stored for long time
In-situ decomposition to produce H₂ when required

CO₂

Ammonia as an energy carrier

H₂ production from NH₃ decomposition

 $NH_3 \leftrightarrow 0.5 N_2 + 1.5 H_2$

H₂ production from NH₃ decomposition in a membrane reactor

H_2 production from NH_3 decomposition in a membrane reactor

TU/e

V. Cechetto, L. Di Felice, J. A. Medrano, C. Makhloufi, J. Zuniga, and F. Gallucci, "H₂ production via ammonia decomposition in a catalytic membrane reactor," *Fuel Process. Technol.*, vol. 216, p. 106772, 2021, doi: https://doi.org/10.1016/j.fuproc.2021.106772.

Effect of membranes' separation properties on the performance of a MR for NH₃ decomposition

Membrane	Selective layer composition	Selective layer thickness [µm]	Membrane area [m²]	Membrane configuration	Type of support	H ₂ permeance [mol/s/m ² /Pa]	N ₂ permeance [mol/s/m ² /Pa]	H ₂ /N ₂ perm- selectivity [-]
M1	Pd-Ag	~ 4-5	5.9·10 ⁻³	Supported tubular DS	Ceramic	1.64·10 ⁻⁶	3.47·10 ⁻¹¹	47080
M2	Pd-Ag	~ 6-8	8.6•10-3	Supported tubular DS	Ceramic	1.15·10 ⁻⁶	1.66.10-11	68960
M3	Pd-Ag	~ 6-8	4.0.10-3	Supported tubular conventional	Metallic	6.57·10 ⁻⁷	1.12.10-10	5890
M4	CMSM	~ 3–5	2.5·10 ⁻³	Supported tubular conventional	Ceramic	1.01.10-7	3.85·10 ⁻⁹	26

DS = Double -skinned

Cechetto, V.; Agnolin, S.; Di Felice, L.; Pacheco Tanaka, A.; Llosa Tanco, M.; Gallucci, F. Metallic Supported Pd-Ag Membranes for Simultaneous Ammonia Decomposition and H₂ Separation in a Membrane Reactor: Experimental Proof of Concept. *Catalysts* **2023**, *13*, 920. https://doi.org/10.3390/catal13060920

Effect of membranes' separation properties on the performance of a MR for NH₃ decomposition

Membrane	Selective layer composition	Selective layer thickness [µm]	Membrane area [m²]	Membrane configuration	Type of support	H ₂ permeance [mol/s/m ² /Pa]	N ₂ permeance [mol/s/m ² /Pa]	H ₂ /N ₂ perm- selectivity [-]
M1	Pd-Ag	~ 4-5	5.9 · 10 ⁻³	Supported tubular DS	Ceramic	1.64·10 ⁻⁶	3.47·10 ⁻¹¹	47080
M2	Pd-Ag	~ 6-8	8.6•10 ⁻³	Supported tubular DS	Ceramic	1.15·10 ⁻⁶	1.66.10-11	68960
M3	Pd-Ag	~ 6-8	4.0.10-3	Supported tubular conventional	Metallic	6.57·10 ⁻⁷	1.12.10-10	5890
M4	CMSM	~ 3–5	2.5·10 ⁻³	Supported tubular conventional	Ceramic	1.01.10-7	3.85·10 ⁻⁹	26

DS = Double -skinned

Cechetto, V.; Agnolin, S.; Di Felice, L.; Pacheco Tanaka, A.; Llosa Tanco, M.; Gallucci, F. Metallic Supported Pd-Ag Membranes for Simultaneous Ammonia Decomposition and H₂ Separation in a Membrane Reactor: Experimental Proof of Concept. *Catalysts* **2023**, *13*, 920. https://doi.org/10.3390/catal13060920

Effect of membranes' separation properties on the performance of a MR for NH₃ decomposition

Membrane	Selective layer composition	Selective layer thickness [µm]	Membrane area [m²]	Membrane configuration	Type of support	H ₂ permeance [mol/s/m ² /Pa]	N ₂ permeance [mol/s/m ² /Pa]	H ₂ /N ₂ perm- selectivity [-]
M1	Pd-Ag	~ 4-5	5.9·10 ⁻³	Supported tubular DS	Ceramic	1.64·10 ⁻⁶	3.47·10 ⁻¹¹	47080
M2	Pd-Ag	~ 6-8	8.6•10-3	Supported tubular DS	Ceramic	1.15•10-6	1.66.10-11	68960
M3	Pd-Ag	~ 6-8	4.0.10-3	Supported tubular conventional	Metallic	6.57·10 ⁻⁷	1.12.10-10	5890
M4	CMSM	~ 3–5	2.5·10 ⁻³	Supported tubular conventional	Ceramic	1.01.10-7	3.85·10 ⁻⁹	26

DS = Double -skinned

	NH ₃ concentration in the permeat			
Temperature [°C]	M2	M4		
450	11.8 ppm	4.0%		
475	6.1 ppm	1.3%		
500	1.6 ppm	0.6%		

Cechetto, V.; Agnolin, S.; Di Felice, L.; Pacheco Tanaka, A.; Llosa Tanco, M.; Gallucci, F. Metallic Supported Pd-Ag Membranes for Simultaneous Ammonia Decomposition and H₂ Separation in a Membrane Reactor: Experimental Proof of Concept. *Catalysts* **2023**, *13*, 920. https://doi.org/10.3390/catal13060920

H_2 purification from residual NH_3

PEMFC specifications requires residual NH_3 concentration in the H_2 feed < 0.1 ppm.

Strategy 1: Increase of the membrane selective layer thickness

Membrane	Thickness selective layer [µm]	H_2/N_2 perm-selectivity T=450°C and $\Delta P=1$ bar	H ₂ recovery [%]	NH ₃ concentration in the permeate [ppm]	
M4	~ 1	5210	93.2	47 (±2.1)	
M2	~ 6-8	68960	84.8	< 0.75	

Reaction temperature = 500 °C, reaction pressure = 4 bar(a), ammonia feed flow rate = 0.5 L_N /min.

$\rm H_2$ purification from residual $\rm NH_3$

Thinner membranes can be used with a consequent decrease of investment costs:

The introduction of a hydrogen purification stage downstream the membrane reactor allows to operate the reactor at lower temperatures and to accept higher NH₃ concentration at the reactor outlet with benefits from an energetic point of view.

Techno-economics

Is the membrane reactor-based system economically competitive compared to a conventional system?

Studies available in literature calculated the costs of hydrogen production, but a comparative study addressing a techno-economic assessment at different plant capacities and system configurations is not available.

This work:

Techno-economic assessment of a decentralized plant

for hydrogen production from ammonia decomposition

- \succ H₂ for direct use in PEM fuel cells
- Stationary and vehicle applications

Target:

- 500 kg/day of H₂
- H₂ purity = 99.97%
- Max NH₃ concentration in H₂ stream = 0.1 ppm

H_2 production from NH_3 : the conventional and the **MR-based systems**

Economic evaluation

 $COH = \frac{(TOC \cdot CCF) + C_{O\&M,fixed} + C_{O\&M,variable}}{Capacity \cdot Plant availability}$

Plant Component Cost [k€] Component W А Component X В Component Y С Component Z D Bare Erected Cost [BEC] A+B+C+D Direct costs as percentage of BEC Total Installation Costs [TIC] 80% BEC Total Direct Plant Cost [TDPC] **BEC+TIC** Indirect Costs [IC] 14% TDPC Engineering procurement and construction TDPC+IC [EPC] Contingencies and owner's costs Contingency 10% EPC Owner's cost 5% EPC Total contingencies & OC [C&OC] 15% EPC

$C = C \cdot \left(\frac{S_i}{S_i}\right)^n + E \cdot E$	CEPCI
$C_i = C_0 \cdot \left(\frac{\overline{S_0}}{S_0} \right) \cdot F_p \cdot F_m$	$CEPCI_{reference year}$

EPC+C&OC

Total Overnight Cost [TOC]

Cost O&M fixed	
Maintenance	2.5% TOC
Insurance	2% TOC
Labor	55982 €/year/pp ¹

COST O&M variable	
Green NH ₃	853.92 €/ton ²
Electricity	0.085 €/kWh ³
Catalyst	143 €/kg ³
Zeolite 13X	43.7 €/kg ⁴
Membrane	6000 €/m ³

Assumptions	
Plant availability	90%
Plant lifetime (n)	25 ³
Catalyst lifetime	5
Lifetime Zeolite 13X	5
Membrane lifetime	5
Discount factor (i)	8% ³
	$(i + 1)^n$

 $CCF = \frac{(i+1)^n}{((i+1)^n - 1)}$

¹https://www.payscale.com/research/NL/Job=Chemical Process Operator/Salary

² https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary
³ S. Richard, A. Ramirez Santos, and F. Gallucci, "PEM genset using membrane reactors technologies An economic comparison among different e-fuels", International Journal of Hydrogen Energy
⁴ https://www.msesupplies.com/products/1kg-molecular-sieves-13x-pellets-spheres?variant=31758805205050

TU/e

Cost of H_2 production: is extra fuel H_2 or NH_3 ?

VEHICLE APPLICATIONS

TU/e

Vehicle applications: COH in a conventional system

Economic opti	imum	CAPEX	ODEV fixed
T = 500 °C P = 5 bar		3,3%	6,1%
SHARE COSTS	[€/kg]		
CAPEX	0.25	, P	
OPEX FIXED	0.46		
OPEX VARIABLE	6.85		
СОН	7.56	90,6% OPEX variable	

+

Vehicle applications: COH in a MR-based system

Experimental results		NH₃ in [L _N /min]	⊤ [° C]	P retentate [bar]	P permeate [bar]	NH ₃ conversion [%]	H ₂ recovery [%]	H ₂ purity [%]	NH ₃ concentration permeate [ppm]	
Experimental operating condi	itions			3		99.6	75.4	99 997	 25	
Membrane	DS Pd-Ag			3		00.0	, , , ,	00.005	4.2	
Membrane thickness [um]	4-5	0.5	500	4	1	99.8	84.8	99.995	4.3	
	13			5		99.8	88.9	99.994	7.9	
Membrane length [m]	0.135			6		99.8	91.6	99.992	12.5	
Mass catalyst [g]	250		450			99.7	87 5	99 994	 46.6	
D reactor [m]	0.045	0.5	100	F	1	00.8	97 5	00.002	16.0	
L reactor [m]	0.297	0.5	500	5	1	99.8	88.9	99.991	8.1	

>99.97% >0.1 ppm

e

Vehicle applications: COH in a MR-based system

TU/e

Vehicle applications: conventional vs MR-based system

CONVENTION	SHARE COSTS	[€/kg]		
		<u>-</u>	CAPEX	0.25 (3.3%)
			OPEX FIXED	0.46 (6.1%)
CAPEX			OPEX VARIABLE	6.85 (90.6%)
САРЕХ	Cost [k€]	Burner	СОН	7.56
Reactor	72.77	Air blower		Reactor
Heat Exchangers	26.07	4,9%		_33,1%
Compressors	0.66	NH ₃ adsorber		
PSA	64.82	12,2% _/		
NH ₃ Adsorber	26.79			
Air Blower	10.80			Heat exchanger
NH ₃ pump	0.00	PSA		12,2%
Burner	17.31	29,5%	C 0	ompressor 3%
TOTAL	329.18		Catalyst	
OPEX		Electric 2,1%	0,2%	Zeolite 0,7%
OPEX variable	Cost [k€/year			,
Ammonia	1066.5			
Electricity	22.6			
Catalyst	2.0			
Zeolite	7.5			
TOTAL	1559.3			Ammonia
				97.1%

MR-BASED SYSTEM				
CAPEX				
CAPEX	Cost [k€]			
Reactor	26.22			
Heat Exchangers	15.75	E		
Compressors	0.00			
PSA	0.00	Air blowe		
NH ₃ Adsorber	1.00	10,59		
Air Blower	6.96	NH ₃ adsor		
NH ₃ pump	0.00	1,5% _		
Burner	17.02	Com		
TOTAL	66.53			
OPEX				
OPEX variable	Cost [k€/year			
Ammonia	1029.5			
Electricity	1.5			
Catalyst	0.1			
Zeolite	0.0			
Membrane	0.1			
TOTAL	1031.2	Am 9		

Sensitivity Analysis and Forecasting

Cost of Green NH ₃						
		Year	Cost of NH ₃ [€/ton]	COH [€/kg]		
		2020	853.92	6.75		
		2030	377.07	3.25		
		2050	277.30	2.52		

https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary

Conclusions

In a membrane reactor for H_2 production from NH_3 :

- Higher efficiency and compactness compared to a conventional system are achieved
- Optimization is possible by tuning the membrane separation performance, the membrane area and the operating conditions
- □ Fuel cell-grade H₂ production is possible with the addition of a relatively inexpensive sorption unit downstream the reactor.
- From an economic point of view, the technology installed in a decentralized plant for H₂ production is competitive compared to the conventional technology due to the reduced installation costs as well as operating costs for utilities consumption.

NH₃

Thank you for your attention!

Inorganic Membranes & Membrane Reactors

This project receives support from the European Union's Horizon 2020 research and innovation under grant agreement No. 862482

Vehicle applications: COH in a MR-based system

TU/e