CATALYTIC ACTIVATION OF PERIODIC OPEN CELLULAR STRUCTURES (POCSS) FOR THE INTEGRATION WITH MEMBRANES TO ENHANCE AMMONIA SYNTHESIS IN MEMBRANE REACTORS

Cristina Italiano¹, Assia Saker², Lidia Pino¹, Massimo Laganà¹, Minju Thomas¹, Gabriel Marino¹, Benjamin Hary³, Steve Nardone³, Nicolas Meynet², Alvaro Ramirez Santos², <u>Antonio Vita¹</u>

 ¹ Institute CNR-ITAE, Via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina, Italy
² 2ENGIE Lab CRIGEN, 4 Rue Joséphine Baker, Stains, France
³ ENGIE Laborelec, Rodestraat 125, 1630 Linkebeek, Belgium

16TH INTERNATIONAL CONFERENCE ON CATALYSIS IN MEMBRANE REACTORS (ICCMR16-2023) <u>Donostia-San Sebastián, Spain</u> October 16-18

GREEN AMMONIA PRODUCTION FOR LONG-TERM H₂ STORAGE

Ammonia121 kg H2/m3Methanol99 kg H2/m3Liquid Hydrogen71 kg H2/m3LOHC57 kg H2/m3

Highest energy density

Cost advantage for long-distance transportation

 \checkmark

Existing infrastructure for ammonia transportation

Current NH₃ production has the lowest CCS cost (due to the CO₂ separation step) (blue ammonia)

Distributed ammonia plant will offer liquid storage of renewable electricity at ambient pressure and low boil-off conditions. Ammonia can then be safely transported by road or rail to the user or used locally giving birth to local industrial ecosystems.

GREENING OF AMMONIA PRODUCTION HABER-BOSCH DRAWBACKs

 $3H_2 + N_2 \rightarrow 2NH_3$, $\Delta H = -92 \text{ Kj/mol}$

Ammonia synthesis is deceptively simple

Nearly 80% of every breath we take is nitrogen (N_2)

Easy to find, hard to use (*limiting step: activation of the stable* $N \equiv N$ *bond,* 945 kJ mol⁻¹)

$\mathbf{6H_2O} + \mathbf{3CH_4} + \mathbf{4N_2} \rightarrow \mathbf{3CO_2} + \mathbf{8NH_3}$

1.2% of anthropogenic CO₂ emissions

Energy-hungry (0.58 MJ/mol_{NH3} – 0.81 MJ/mol_{NH3})

AMMONIA AND MOF BASED HYDROGEN STORAGE FOR EUROPE

WP3 "Key materials and components for long term Hydrogen Storage"

Task 3.3: Bench-scale (TRL 4) 3D printed POCS and novel JM catalysts:

Subtask 3.3.2: Catalytic activation, characterization and performances of thermal conductive open-cell foams and POCS with commercial reference catalyst (1st generation)

Funded by the European Union Integration of POCS catalysts with membranes in a membrane reactor

Schematic sequence of POCSs manufacturing process **STL file** Three-dimensional **Final POCS Supports** (3D) printing generation User Input Strut diameter SLM 280 H Kelvin cell SLM engie Process Metal powder output Selective Laser Melting (SLM)

Detailed design with Netfabb software

Material	Cell type	Cell size (mm)	Strut diame ter (mm)	Volume (cm ³)	Surface (cm ²)	Surface/ Volume r atio	Theor. Rel ative Dens ity	Sample name
Al alloy (AlSi10Mg)	BCC	3	0.6	0.220	12.94	58.82	0.17	4a-4b-4c-4d-4e- 4f
	Kelvin	3	0.6	0.290	15.23	52.52	0.21	5a-5b-5c-5d-5e- 5f
Cu alloy (CuNi2SiCr)	Kelvin	3	0.6	0.290	15.23	52.52	0.21	6a-6b-6c-6d-6e

Material	Cell type	Cell size (mm)	Strut diameter (mm)	Volume (cm ³)	Surface (cm ²)	Surface/ Volume ratio	Theor. Rel ative Dens ity	Sample name
		3	0.6	0.290	15.23	52.52	0.21	7a
		4	0.6	0.153	9.08	59.37	0.11	7b
		3	0.8	0.518	16.93	32.68	0.36	7c
Ni alloy	Kelvin	3	0.4	0.126	11.21	88.97	0.10	7d
(IN625)	Kelviii	1.5	0.3	0.292	29.79	102.02	0.23	7e
		4	0.8	0.278	11.39	40.97	0.19	7f
		2	0.4	0.288	22.46	78.00	0.22	7g
		2	0.6	0.631	25.20	39.94	0.45	7h

Ø = 1cm, L = 1.5cm

Morphological characterizations and porosity

Material	Cell type	Cell size (mm)	Strut diameter (mm)	** Solid Volume (cm³)	** Solid density (g/cm³)	Internal Surface area (cm ²)	** Porosity (%)	Geom. density (g/cm ³)	Specific surf. area (cm²/cm³)	Relative density
IN625	BCC	2 (2*)	0.4 (0.41*)	0.219	10.87	9.45	82.9	2.80	87.03	0.17
IN625	BCC	2 (2*)	0.6 (0.6*)	0.489	8.79	24.52	63.9	2.02	48.77	0.36
IN625	BCC	3 (3*)	0.4 (0.4*)	0.099	11.31	19.06	92.1	3.65	95.66	0.08
IN625	BCC	3 (3*)	0.6 (0.59*)	0.220	8.86	23.85	83.3	0.95	58.82	0.17
IN625	BCC	3 (4*)	0.8 (0.75*)	0.395	4.41	9.47	71.5	1.66	39.01	0.29
IN625	BCC	4 (4*)	0.6 (0.62*)	0.116	9.14	12.94	91.2	1.48	64.48	0.09
IN625	BCC	4 (3*)	0.8 (0.75*)	0.206	16.02	15.41	85.2	0.90	45.85	0.15
IN625	BCC	1.5(1.5*)	0.3 (0.3*)	0.212	12.08	7.48	83.3	2.80	115.66	0.17

*Measured value: *Calculated from optical images, **Calculated from He pycnometer measurement*

Optical microscope images of as-built BCC Ni-alloy POCS

Cell Type = 3, Ø Strut =0.4mm, SSA = 95.66 cm²/cm³, Porosity = 92%

Cell Type = 3, Ø Strut =0,6 mm, SSA = 58,82 cm²/cm³, Porosity = 83,3%

Cell Type = 3, Ø Strut =0,8 mm,

SSA = 39,01 cm²/cm³, Porosity = 71,3%

Funded by

the European Union

Elium pycnometer (Model 1305 Multivolume, Micromeritics)

SEM micrographs

Morphological characterizations and porosity

Material	Cell type	Cell size (mm)	Strut diameter (mm)	**Solid Volume (cm ³)	** Solid density (g/cm ³)	Internal Surface area (cm ²)	** Porosity (%)	Geom. density (g/cm ³)	Specific surf. area (cm ² /cm ³)	Relative density
IN625	KELVIN	2 (2*)	0.6 (0.4*)	0.631	9.30	25.20	54.5	4.99	39.94	54.5
IN625	KELVIN	3 (3.04*)	0.4 (0.44*)	0.126	14.21	11.21	90.4	1.52	88.97	90.4
IN625	KELVIN	3 (3*)	0.6 (0.69*)	0.290	10.14	15.23	78.7	2.50	52.52	78.7
IN625	KELVIN	3 (3*)	0.8 (0.86*)	0.518	9.42	16.93	64.4	4.14	32.68	64.4
IN625	KELVIN	4 (4*)	0.6 (0.61*)	0.153	10.85	9.08	88.6	1.41	59.37	88.6

*Measured value: *Calculated from optical images, **Calculated from He pycnometer measurement*

Optical microscope images of as-built kelvin Ni-alloy POCS

Cell Type = 3, Ø Strut =0.4mm, SSA = 88.9 cm²/cm³, Porosity = 90.4%

Cell Type = 3, Ø Strut =0,6 mm, SSA = 52,52 cm²/cm³, Porosity = 78,7% Cell Type = 3, Ø Strut =0,8 mm, SSA = 32,68 cm²/cm³, Porosity = 64.4%

Funded by

the European Union

Elium pycnometer (Model 1305 Multivolume, Micromeritics)

SEM micrographs

Morphological characterizations

Cu alloy; kelvin (sand - blasted)

Funded by the European Union

Material	Cell type	Cell size (mm)	Strut diameter (mm)	** Solid Volume (cm ³)	**Solid density (g/cm ³)	Internal Surface area (cm ²)	Porosity (%)	Geom. ^{**} density (g/cm ³)	Specific surf. area (cm ² /cm ³)	Relative density
IN625	HEXA	2 (2*)	0.4 (0.42*)	0.336	10.33	26.15	73.8	2.95	77.83	73.8
IN625	HEXA	2 (2*)	0.6 (0.61*)	0.745	8.16	29.78	44.8	5.16	39.97	44.8
IN625	HEXA	3 (3*)	0.4 (0.42*)	0.142	11.27	12.74	89.1	1.36	89.72	89.1
IN625	HEXA	3 (3*)	0.6 (0.61*)	0.326	8.53	17.28	75.4	2.36	53.01	75.4
IN625	HEXA	3 (2.98*)	0.8 (0.82*)	0.582	7.32	19.68	58.3	3.62	33.81	58.3
IN625	HEXA	4 (3.96*)	0.6 (0.6*)	0.182	9.01	10.53	86.3	1.39	57.86	86.3
IN625	HEXA	4 (4*)	0.8 (0.76*)	0.332	8.10	13.10	76.2	2.28	39.46	76.2
IN625	HEXA	1.5(1.5*)	0.3 (0.33*)	0.338	11.36	34.68	73.5	3.26	102.60	73.5

*Measured value: *Calculated from optical images, **Calculated from He pycnometer measurement*

Optical microscope images of as-built HEXA Ni-alloy POCS

Funded by the European Union

Cell Type = 3, Ø Strut =0.4mm, SSA = 89.7 cm²/cm³, Porosity = 89.1%

Material	Cell type	Cell size (mm)	Strut diameter (mm)	** Solid Volume (cm³)	** Solid density (g/cm ³)	Internal Surface area (cm ²)	** Porosity (%)	Geom. density (g/cm ³)	Specific surf. area (cm ² /cm ³)	Relative density
IN625	TETRA	2 (2*)	0.4 (0.4*)	0.326	11.04	25.56	74.9	3.06	78.40	0.25
IN625	TETRA	2 (2*)	0.6 (0.58*)	0.710	8.68	28.12	51.5	5.23	39.60	0.49
IN625	TETRA	3 (3*)	0.4 (0.42*)	0.147	11.90	13.14	88.8	1.49	89.39	0.11
IN625	TETRA	3 (3*)	0.6 (0.57*)	0.325	9.75	16.82	76.1	2.69	51.75	0.24
IN625	TETRA	3 (3*)	0.8 (0.76*)	0.563	9.36	18.74	61.6	4.48	33.29	0.38
IN625	TETRA	4 (3.99*)	0.6 (0.6*)	0.179	8.99	10.95	86.7	1.37	61.20	0.13
IN625	TETRA	4 (4.03*)	0.8 (0.77*)	0.322	8.23	13.43	77.8	2.25	41.70	0.22
IN625	TETRA	1.5(1.5*)	0.3 (0.3*)	0.317	12.81	33.34	75.3	3.45	105.17	0.25

Measured value: *Calculated from optical images, **Calculated from He pycnometer measurement

Cell Type = 3, Ø Strut =0.4mm, SSA = 89.3 cm²/cm³, Porosity = 88.8%

Funded by the European Union

Pressure drop

Al alloy; BCC (as built)

Funded by the European Union *⊗*AMBHER

Pressure drop

Funded by the European Union

Pressure drop

Pressure drop

Funded by the European Union

⊗AMB**H**ER

engie

Consiglio Nazionale

Main steps involved in the preparation of a POCS catalysts by washcoating

Method 1 (Thermal treatment based)

engie

Method 1 (Anodization based)

Method 2

Schematic representation of the typical steps of the washcoating process

engie

Consiglio Nazionale

Influence of :

- I. Slurry composition;
- 2. Catalyst formulation;
- 3. Powder ball milling rate;
- 4. Slurry ball milling time;
- 5. Support Thermal Treatment;
- 6. Support Anodization;
- 7. Primer (Disperal P2) utilization;
- 8. Support geometry (BCC, Kelvin);
- 9. Calcination temperature and time;
- 10. POCSs sand-blasted pretreatment

Catalysts (CNR) Mt%Ni CeO2 Mt%Ni CeO2-Al2O3 Image: Constant of the state of the

Composition of the different slurry prepared.

Slurry	Catalyst formulation	Powder Catalyst (%)	Glycerol (%)	PVA (%)	Water (%)	Disperal P2 [®] Boehmite (%)
SC1	Ni/CeO ₂	24.03	45.65	1.49	28.83	-
SC2A	Ni/CeO ₂	22.40	42.50	1.50	33.60	-
SC3	Ni/CeO ₂	25.36	48.18	1.46	25.00	-
SC2B	Ni/CeO ₂ -Al ₂ O ₃	22.40	42.50	1.50	33.60	-
SC2C	Ni/CeO ₂	20.14	42.50	1.50	33.60	2.26

Solid density

 (cm^3/g)

16.32

26.97

SC2B

NiCeO2-

AI203

SC2A

NiCeO2

DISPERAL P2						
highly dispersible						
Boehmite (aluminium oxide						
hydroxide, y-AlO(OH)						
powders						
0						
Al						
53501 %						
Single data sister state						

Funded by the European Union

MBHER

engie

Method 1

Influence of Thermal Pre -Treatment of BCC support

Energy-dispersive X-ray spectroscopy (EDAX)

Elements	Wt %	At %	E
ОК	3,30	5.80	
MgK	0,36	0,44	
AIK	85.11	83,24	A
SiK	11,23	10,58	S

Elements	Wt %	At %
ОК	8.46	13.55
MgK	1.11	1.17
AIK	75.58	71.75
SiK	14.84	13.54

Elements	Wt %	At %
ОК	11.07	17.43
Mg K	2.78	2.88
AI K	65.95	61.57
Si K	20.20	18.11

engie

Al-alloy; BCC (as built)

Cell Type = 3, Ø Strut =0,6 mm, SSA = 58,82 cm²/cm³, Porosity = 83,3%

Method 1

Slurry Composition (SC2 C)

Cat. loading: 0.1 g/cm³

¹ Rheological behaviour of slurry

shear rate [1/s]

engie

, **Porosity** = 78,7%

Strut =0,6 mm,

e = 3, 0 S cm^{2}/cm^{3}

Cell Type =

52,52

= ASS

🕑 Method 1

Cell Type = 3, Ø Strut =0,4 mm, SSA = 58,82 cm²/cm³, Porosity = 83,3%

Cell Type = 3, Ø Strut =0,6 mm, SSA = 52,52 cm²/cm³, Porosity = 78,7%

Cell Type = 3, Ø Strut =0,8 mm, SSA = 32,68 cm²/cm³, Porosity = 64.4%

Catalysts preparation and characterization (4wt%Ru/CeO₂)

Solution Combustion synthesis sequence: a) *muffle introduction of water precursors and fuel mixture; b) reaction initiation; c and d) cooling phase; c) final catalyst (fine powder)*

Combustion temperature profile

Ce Precursor	Ru Precursor	Fuel
Ce(NO ₃) ₃ · 6H ₂ O	Ru(NO)(NO3)x(OH) y, x+y=3	Urea

engie

engie

Funded by the Europe

 MBH_2^{ER}

Cell Type = 3, Ø Strut =0,8 mm, SSA = 32,68 cm²/cm³, Porosity = 64.4%

D Pressure drop

SAMBHER Control the European Union

П

Ammonia synthesis: Preliminary catalytic activity

Test rig for the evaluation of catalytic performances of catalysts towards the ammonia synthesis up to 50 bar

Operative conditions	
Temperature	300 - 500 (°C)
Pressure	20 – 30 - 50 (bar)
WSV	12000 (cm³ g _{cat} -1 h ⁻¹) 38000 (cm³ g _{cat} -1 h ⁻¹)
Total IN Flow	41 cm³/min 130 cm³/min
H_2/N_2	3:1
Catalyst	4wt%Ru/CeO ₂ (loading = 0,17 g/cm³, 0.2g)

Cell Type = 3, Ø Strut =0,6 mm,

Work in progress

Funded by

the European Union

 $\bigcirc AMBHER$

engie

CONCLUSIONS

the European Union SAMBHER

POCSs Manufacturing

- 1. Additive Manufacturing (AM) is a powerful tool for preparing conductive Periodic Open Cellular Structures (POCS) with potentially infinite geometries characterized by high porosities and Specific Surface Area;
- 2. It is also cost-effective, as it requires less material than traditional manufacturing methods;
- 3. It can be used to create parts with complex geometries that would be difficult or impossible to produce using traditional methods and also allows for better control of porosity and pressure drop, enabling parts to be made with higher precision and accuracy.
- 4. Between the different 3D-printed geometries studied, the BCC and KELVIN showed the lowest pressure drop

Coated POCSs

- 1. Dip/Spin coating is an attractive option for the catalytic activation of metallic 3D printed POCSs;
- 2. The method allows for control of the thickness (20-40μm) and the homogeneity of the resulting coated layers by adjusting slurry viscosity and coating parameters such as rotation speed and rotation time;
- 3. The catalytic layer deposited resulted well anchored to the POCS surface;
- 4. The presence of anchoring points, the thermal or anodization pre-treatment (or both) of supports or the primer (DISPERAL P2) utilization (both in the slurry and coated on the supports) play a crucial role in achieving high mechanical stability;
- 5. No pore-clogging phenomena were observed irrespective of the geometry used;
- 6. The method is potentially easily scalable

Catalytic activity towards ammonia synthesis

1. Preliminary catalytic activity carried out with a kelvin POCS coated with 4wt%Rh/CeO₂ has demonstrated promising results at high WSV.

Staff involved

Antonio Vita Senior Researcher Head of FPMaT, antonio.vita@itae.cnr.it

Massimo Laganà Technician, Test facilities design, laboratory activities massimo.lagana@itae.cnr.it Lidia Pino Researcher Manager Catalysts design lidia.pino@itae.cnr.it

Minju Thomas Postdoctoral Researcher, Laboratory activities thomas@itae.cnr.it **Cristina Italiano** Researcher Catalyst design , Responsible of the laboratory cristina.italiano@itae.cnr.it

> Gabriel Marino. Research fellow Laboratory activities marino@itae.cnr.it

Thanks!

Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano" (ITAE)

Dr. Antonio Vita

Fuel Processing Materials and Technologies (FPMaT)

<u>antonio.vita@itae.cnr.it</u>

We are pleased to invite you to participate in the IX Symposium on Hydrogen, Fuel Cells and Advanced Batteries, HYCELTEC 2024. The conference will take place <u>from June 30th to</u> <u>July 3rd, 2024, in Milazzo (Messina, Italy)</u>, a lovely sicilian town facing the Aeolian Islands. The venue will be the impressive hilltop **Castle of Milazzo**.

HYCELTEC 2024 will be certainly an interdisciplinary forum for discussion of topics related to fuel cells, hydrogen and batteries, bringing together researchers from academia, technological centers and industry.

Please visit the website: <u>www.hyceltec2024.it</u> (under construction)

Topics

1. Hydrogen

- a) Production
- b) Carriers
- c) Storage and transportation

d) Integration with renewable source energies

e) Environmental and social impacts

f) Other related subjects

2. Fuel Cells

- a) Low and high temperature
- b) Applications
- c) Development of components and materials
- d) Degradation mechanisms
- e) Device integration

3. Advanced Batteries

- a) Liquid-, fused-, solid-state and polymeric batteries
- b) Redox flow batteries
- c) Supercapacitors
- d) Electrochromic energy storage devices

