Catalytic activation of 3D printed AlSi10Mg Periodic Open Cellular Structures (POCSs) by combined dip/spin coating method for the intensification of ammonia synthesis

Cristina Italiano¹, Assia Saker², Massimo Laganà¹, Minju Thomas¹, Benjamin Hary³, Steve Nardone³, Nicolas Meynet², Lidia Pino¹, Alvaro Ramirez Santos², Antonio Vita^{*1}

Detailed design with Netfabb software

-INTRODUCTION

¹ Institute CNR-ITAE, Via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina, Italy ² 2ENGIE Lab CRIGEN, 4 Rue Joséphine Baker, Stains, France ³ ENGIE Laborelec, Rodestraat 125, 1630 Linkebeek, Belgium

Corresponding Author: antonio.vita@itae.cnr.it

The present work deals with the design, manufacturing (by Laser Powder Bed Fusion), characterization, and catalytic activation (by a washcoating method) of Periodical Cellular Structures (POCS) 3D-printed in a cylindrical shape ($\emptyset = 1$ cm, Length = 1.5 cm), in different materials (Al-, Cu-, Ni-alloys) and with various structural parameters (porosity, density, cell type and strut dimensions). The general aim is to intensify the ammonia synthesis throughout the development of structured catalysts with geometries that allow the integration with ammonia selective membranes in a membrane-based reactor to increase productivity at low temperatures (250-300°C) and pressure (20-25bar).

RESULTS

ADDITIVE MANUFACTURING (AM) fast, easy, highly accurate and productive, part of the digital industry..!!

Schematic sequence of POCS manufacturing process

Three-dimensional (3D) printing

POCS CHARACTERIZATION (AS BUILT)... complex geometry, high porosity and Specific Surface Area...!! Morphology CAMB HER

u Summary of the Ni-alloy POCSs and related geometric features

Cell type	Cell size (mm)	Strut diameter (mm)	** Solid Volume (cm ³)	** Solid density (g/cm ³)	Internal Surface area (cm ²)	** Porosity (%)	Geom. density (g/cm ³)	Specific surf. area (cm²/cm³)	Relative density
BCC	2 (2*)	0.4 (0.41*)	0.219	10.87	9.45	82.9	2.80	87.03	0.17
BCC	2 (2*)	0.6 (0.6*)	0.489	8.79	24.52	63.9	2.02	48.77	0.36
BCC	3 (3*)	0.4 (0.4*)	0.099	11.31	19.06	92.1	3.65	95.66	0.08
BCC	3 (3*)	0.6 (0.59*)	0.220	8.86	23.85	85.3	0.95	58.82	0.17
BCC	4 (4*)	0.6 (0.62*)	0.116	9.14	12.94	91.2	1.48	64.48	0.09
BCC	3 (3*)	0.8 (0.75*)	0.206	16.02	15.41	83.2	0.90	45.85	0.15
BCC	1.5(1.5*)	0.3 (0.3*)	0.212	12.08	7.48	83.3	2.80	115.66	0.17

Cell type	Cell size (mm)	Strut diameter (mm)	** Solid Volume (cm ³)	∗∗ Solid density (g/cm ³)	Internal Surface area (cm ²)	** Porosity (%)	Geom. density (g/cm ³)	Specific surf. area (cm²/cm³)	Relative density
KELVIN	3 (3.04*)	0.4 (0.44*)	0.126	14.21	11.21	90.4	1.52	88.97	90.4
KELVIN	3 (3*)	0.6 (0.69*)	0.290	10.14	15.23	78.7	2.50	52.52	78.7
KELVIN	3 (3*)	0.8 (0.86*)	0.518	9.42	16.93	64.4	4.14	32.68	64.4
KELVIN	4 (4*)	0.6 (0.61*)	0.153	10.85	9.08	88.6	1.41	59.37	88.6

Calculated from optical images,* *Calculated from He pycnometer measurement*

Influence of cell geometry and size, strut diameter and porosity

CATALYTIC ACTIVATION OF POCS... homogeneous layers, well anchored, no pore-clogging phenomena ..!!

author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

Ni/CeO₂, Pimer + T.T = 300°C, C.T = 450°C/6h, Slurry + DISPERAL

• AM is able to manufacture complex parts allowing more freedom of design optimization for catalytic reactors compared with traditional manufacturing techniques; • The combined dip/spin coating method can be used to obtain POCS catalysts with

• The structured catalytic systems obtained by combining AM with the whashcoating technique are characterized by higher porosity (88 -90%), higher SSA (50-115 cm²/cm³)