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Introduction

Amongst energy storage solution, Hydrogen Additional H, utility scale storage facilities are

produced from electrolysis offers great ‘ required and amongst all the possibilities, liquid

promises as flexible energy carriers carriers like Ammonia are perfect candidates
'.{ 3 &

Fossil fuels =
a m Hydrogen
. utilization
-O: EE A : Ammonia
‘ : M decomposition
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: S Conversion / : transportation
I . hydrogen production Ammonlla ° Ammonia
Renewable energy synthesis storage/
distribution

Ammonia direct
utilization

Surplus energy (electricity)

“Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization”, Muhammad Aziz et al., Energies 2020
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https://sciprofiles.com/profile/89783

NH  is a carbon-free and dispatchable energy
carrier allowing to store large quantities of
renewable electricity
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Introduction
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ENZ +§H2 (_)NH3

AH,qg =-45.7kl/mol

T=400-500 °C P=100-200 bar

Fe-based or Ru-based catalyst

Rate limiting step: activation of the stable N=N bond

» High inlet temperature to achieve high reaction rate

Low outlet temperature to achieve a high equilibrium conversion

» High pressure to shift the equilibrium towards the products
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Objective of the project
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CATALYTIC MEMBRANE REACTOR (CMR) Ca

C12A7 encaged
Periodic Open Cellular hydride
Structures (POCS) catalyst

Solvated
electron

POCS catalyst with a lower activation
NH, energy barrier, allowing to reduce the

:..f operational Temperature

' NH; Membrane | \

Porous active layer

Dense active layer

Fiber Bore

Porous

pport layer

(L] -

Carbon molecular sieving membrane which

separates NH;, shifting the equilibrium, allowing
to reduce the operational Pressure
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Modeling approach

Reactor model based on the integration of a Ru/C catalyst with an inorganic membrane that is selective to NH,

6

Assumptions:

* |deal plug flow;

e  Steady state;

. Isothermal reactor;

*  No pressure drops;

* Solid-gas phase are modeled as a single phase;
*  The membrane material is considered inert;
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Modeling steps:

> Validation of the model with a kinetic model from
literature

> Validation of the model with a membrane
experimentally tested

» Optimization of membrane properties
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Validation of the kinetic model

» T=370-460 °C
P=50-100 bar

» Rossetti et al. * kinetic model H,:N, feed ratio = 1.5-3

16 kinetic tests have been validated,

in function of the bed porosity

>
» GHSV=0.5-5*10°1/h

g

€ = 0.4 as best trade-off

—®—Model prediction, £=0.3
—*— Model prediction, £€=0.35
—+#— Model prediction, £=0.4
—&— Model prediction, £=0.45

® Rossetti et al. (experimental)
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*”Kinetic Study of Ammonia Synthesis on a Promoted Ru/C Catalyst”, llenia Rossetti et al., Ind. Eng. Chem. Res. 2006
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N2 permeance [mol Pa’' m® 5'1]

Validation of the membrane

» Single gas permeation test
» Experimental results from permeation tests on CMSM > T=300°C
» P=1-6bar

tecnalia ) sz HE n—
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Optimization of membrane properties

Reactor parameters used in the model

Parameter Units Value
Temperature °C 370
Pressure bar 50
H,/N, feed ratio mol/mol 1.5
Reactor length m 1
Reactor m 0.033
diameter
GHSV 1/h 1000
Catalyst bed Kg/m3 590
density
Bed porosity m3,/m3, 0.4
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Equilibrium study with a R-Gibbs reactor

Equilibrium at P=50 bar

50
40 Xy,,=19%

s
< 20
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Optimization of membrane properties

15 | | | L L | L | L
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NH3 permeance [mol Pa' m2 5'1] <106

—o—Selyy 705 s Selyy =5 Selyy 1y 10— Selyy yy =20
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Equation:
Fret __ pret _ Fpassing the membrane
X, = N2° N2 N2
N2 — Fret _ Fback perm
N20 N2

assing the membrane _ . .
FPyssta =nitrogen loss passing

from retentate to permeate

back perm __. .
Fy, =nitrogen loss in the sweep gas,

moving to the retentate
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Optimization of membrane properties

NH =[0-10F]
> Ideal membrane study s NH3/H2 [O 20]
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Back permeation of H,, loss of Hydrogen in the sweep gas Separation of NH, from the retentate stream
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Optimization of membrane properties

NH _[4* 07]
> Real membrane study s NH3/H2 =[20]
Sniy/n,=10 — 100]

Nitrogen loss in the
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Optimization of membrane properties

Best membrane properties:
PNH3 =[4*107]
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Conclusions

s A 1-Dreactor model was developed for ammonia production

% The model has been validated with experimental data from literature

< The membrane reactor has been validated with data derived through experimentally tests
% The membrane reactor has been studied in relation to membrane properties:

=  Ammonia permeance: this plays a key role for both conversion and separation, and the
membrane must have a minimum of 4*107

*  Ammonia Selectivity: the ammonia selectivity over H, and N, does not affects as much the

conversion as the molar flow passing through the membrane of both the reactants. In case of
NH,/H, the selectivity has to be >20, while in case of NH,/N, the selectivity has to be >50
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